3.1099 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

Optimal. Leaf size=118 \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a b d (a+b)}-\frac{2 A E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 A \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}+\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

[Out]

(-2*A*EllipticE[(c + d*x)/2, 2])/(a*d) + (2*C*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*(A*b^2 - a*(b*B - a*C))*El
lipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*b*(a + b)*d) + (2*A*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.527507, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.14, Rules used = {3055, 3059, 2639, 3002, 2641, 2805} \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a b d (a+b)}-\frac{2 A E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 A \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}+\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]

[Out]

(-2*A*EllipticE[(c + d*x)/2, 2])/(a*d) + (2*C*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*(A*b^2 - a*(b*B - a*C))*El
lipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*b*(a + b)*d) + (2*A*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]])

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx &=\frac{2 A \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}+\frac{2 \int \frac{\frac{1}{2} (-A b+a B)-\frac{1}{2} a (A-C) \cos (c+d x)-\frac{1}{2} A b \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a}\\ &=\frac{2 A \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}-\frac{A \int \sqrt{\cos (c+d x)} \, dx}{a}-\frac{2 \int \frac{\frac{1}{2} b (A b-a B)-\frac{1}{2} a b C \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a b}\\ &=-\frac{2 A E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 A \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}+\frac{C \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{b}-\left (\frac{A b}{a}-B+\frac{a C}{b}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx\\ &=-\frac{2 A E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}-\frac{2 \left (\frac{A b}{a}-B+\frac{a C}{b}\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{(a+b) d}+\frac{2 A \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.23216, size = 216, normalized size = 1.83 \[ \frac{-\frac{2 A \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b \sqrt{\sin ^2(c+d x)}}+\frac{2 (2 a B-3 A b) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}-\frac{4 a (A-C) \left ((a+b) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{b (a+b)}+\frac{4 A \sin (c+d x)}{\sqrt{\cos (c+d x)}}}{2 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]

[Out]

((2*(-3*A*b + 2*a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) - (4*a*(A - C)*((a + b)*EllipticF[(c +
 d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(b*(a + b)) + (4*A*Sin[c + d*x])/Sqrt[Cos[c + d*x]
] - (2*A*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]],
 -1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]
^2]))/(2*a*d)

________________________________________________________________________________________

Maple [B]  time = 1.899, size = 411, normalized size = 3.5 \begin{align*} -{\frac{1}{d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\,{\frac{C\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) }{b\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}}-4\,{\frac{ \left ( -A{b}^{2}+abB-{a}^{2}C \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{a \left ( -2\,ab+2\,{b}^{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ) }+2\,{\frac{A \left ( -\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +2\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) }} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-
4*(-A*b^2+B*a*b-C*a^2)/a/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2*A/a*(-(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)
*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*
c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)